Novel modes of localization and function of nanos in the wasp Nasonia.
نویسندگان
چکیده
Abdominal patterning in Drosophila requires the function of nanos (nos) to prevent translation of hunchback (hb) mRNA in the posterior of the embryo. nos function is restricted to the posterior by the translational repression of mRNA that is not incorporated into the posteriorly localized germ plasm during oogenesis. The wasp Nasonia vitripennis (Nv) undergoes a long germ mode of development very similar to Drosophila, although the molecular patterning mechanisms employed in these two organisms have diverged significantly, reflecting the independent evolution of this mode of development. Here, we report that although Nv nanos (Nv-nos) has a conserved function in embryonic patterning through translational repression of hb, the timing and mechanisms of this repression are significantly delayed in the wasp compared with the fly. This delay in Nv-nos function appears to be related to the dynamic behavior of the germ plasm in Nasonia, as well as to the maternal provision of Nv-Hb protein during oogenesis. Unlike in flies, there appears to be two functional populations of Nv-nos mRNA: one that is concentrated in the oosome and is taken up into the pole cells before evidence of Nv-hb repression is observed; another that forms a gradient at the posterior and plays a role in Nv-hb translational repression. Altogether, our results show that, although the embryonic patterning function of nos orthologs is broadly conserved, the mechanisms employed to achieve this function are distinct.
منابع مشابه
Distinct mechanisms for mRNA localization during embryonic axis specification in the wasp Nasonia.
mRNA localization is a powerful mechanism for targeting factors to different regions of the cell and is used in Drosophila to pattern the early embryo. During oogenesis of the wasp Nasonia, mRNA localization is used extensively to replace the function of the Drosophila bicoid gene for the initiation of patterning along the antero-posterior axis. Nasonia localizes both caudal and nanos to the po...
متن کاملبررسی پارازیتیسم تجربی مگس های سینانتروپ Musca domestica ، Lucilia sericata و Sarcophaga haemorrhoidalis توسط زنبورهای پارازیتوئید Nasonia vitripennis ، Pachycrepoideus vindemmiae و Spalangia nigroaenea
Background and purpose: One of the most popular methods to control the synanthropic flies is using parasitoid wasps. The aim of this study was to estimate the experimental parasitism rates of pupae of Musca domestica, Lucilia sericata, and Sarcophaga heamorrhoidalis by parasitoid wasps, including Nasonia vitripennis, Spalangia nigroaenea, and Pachycrepoideus vindemmiae. Materials and methods: ...
متن کاملExtensive zygotic control of the anteroposterior axis in the wasp Nasonia vitripennis.
Insect axis formation is best understood in Drosophila melanogaster, where rapid anteroposterior patterning of zygotic determinants is directed by maternal gene products. The earliest zygotic control is by gap genes, which determine regions of several contiguous segments and are largely conserved in insects. We have asked genetically whether early zygotic patterning genes control similar antero...
متن کاملWaspAtlas: a Nasonia vitripennis gene database and analysis platform
Nasonia vitripennis is a parasitoid wasp which is becoming an important model organism for parasitism, epigenetics, evolutionary and developmental genetics. WaspAtlas is a new gene database in which we have compiled annotation data from all available N. vitripennis releases along with a wealth of transcriptomic data, methylation data and original analyses and annotations to form a comprehensive...
متن کاملDorsoventral Polarity of the Nasonia Embryo Primarily Relies on a BMP Gradient Formed without Input from Toll
In Drosophila, Toll signaling leads to a gradient of nuclear uptake of Dorsal with a peak at the ventral egg pole and is the source for dorsoventral (DV) patterning and polarity of the embryo. In contrast, Toll signaling plays no role in embryonic patterning in most animals, while BMP signaling plays the major role. In order to understand the origin of the novelty of the Drosophila system, we h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 22 شماره
صفحات -
تاریخ انتشار 2010